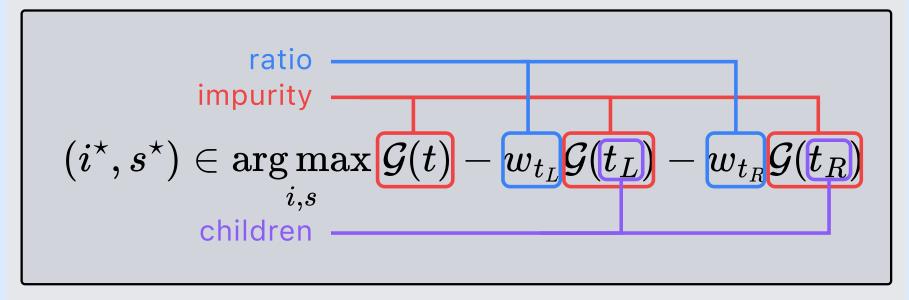
On the Consistency Rate of

Decision Tree Learning Algorithms

LANDA
Learning And Mining from DatA

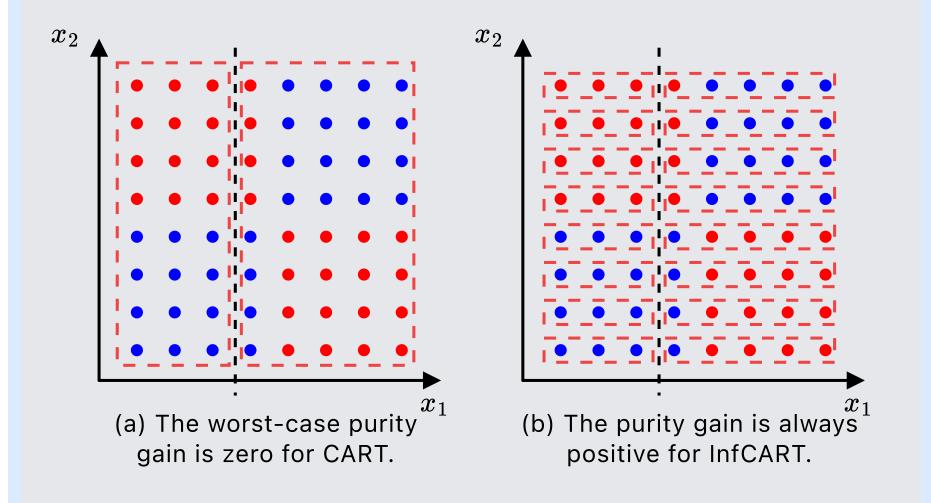

Qin-Cheng Zheng, Shen-Huan Lyu, Shao-Qun Zhang, Yuan Jiang, Zhi-Hua Zhou { zhengqc, lvsh, zhangsq, jiangy, zhouzh }@lamda.nju.edu.cn

Paper in a Nutshell

- 1. We found that the worst-case zero purity gain leads to a serious obstacle for consistency analysis of CART.
- 2. We found that using Influence as the impurity measure can always get a positive purity gain, but an Influence oracle to is required for generating a tree.
- 3. We propose the GridCART, an Influence-based CART, which not only can run practically but also is consistent with order $O(n^{-1/(d+2)})$.

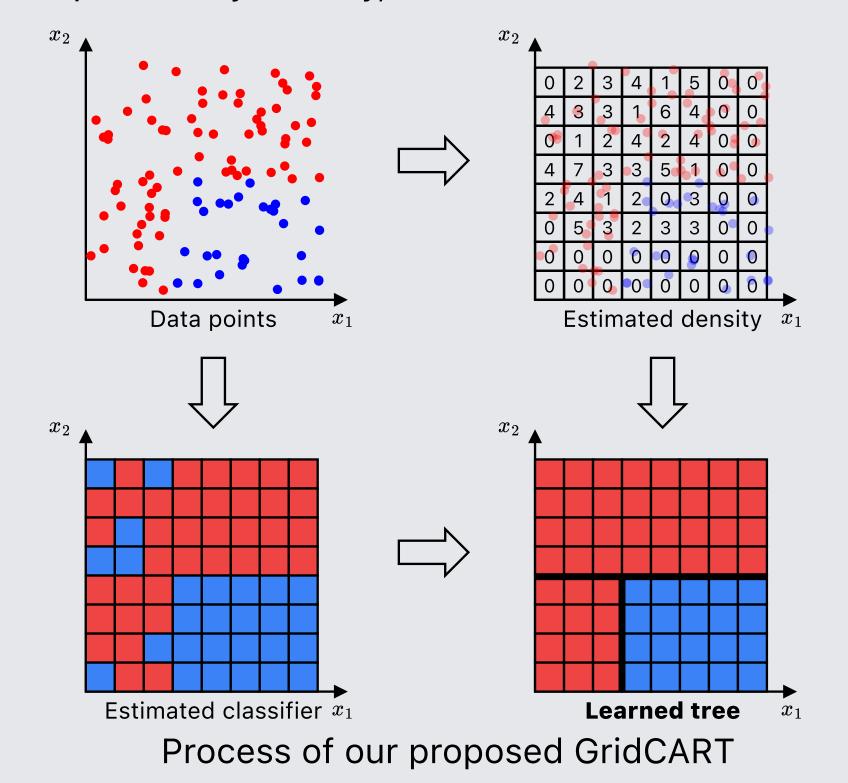
Background

Heuristical algorithms maximize the *purity gain* to spit each node to two children.



This type of algorithm succeeds in many real-world tasks, but the consistency is *far from clear*.

CART vs InfCART


Algorithm	Impurity Measure		
CART	$\mathcal{G}(t) riangleq G\Big(\mathbb{E}_{\mathbf{x}^{(j eq i)}}\left[\mathbb{E}_{\mathbf{x}^{(i)}}[Y \mid \mathbf{x} \in t] ight]\Big)$		
InfCART	$\mathcal{G}(t) riangleq \mathbb{E}_{\mathbf{x}^{(j eq i)}} igg[G\left(\mathbb{E}_{\mathbf{x}^{(i)}}[Y \mid \mathbf{x} \in t] ight) igg]$		

CART always gets zero purity gain in the worst case see (a), while InfCART (a variant) calculates the average purity gain on every line and gets a positive average purity gain see (b).

Our Proposed GridCART

GridCART can not only be practical but also always obtains a positive purity gain. The key is to estimate the probability density, and further the Influence.

Theoretical Guarantees

Consistency rate for GridCART

Theorem 8 (informal). Under certain assumptions, the expected excess error of tree T_{K_n} learned by GridCART has the following upper bound

$$\mathbb{E}_{D_n}ig[R(T_{K_n})ig] - R^\star \leq \mathcal{O}\left(rac{1}{K_n}h_n^3 + h_n^2 + \sqrt{rac{1}{n}h_n^d}
ight).$$

Choosing $h_n = \Theta\left(n^{-1/(d+2)}\right)$, $K_n = \Omega(n^{4/(d+2)})$, we obtain a consistency rate of order $\mathcal{O}\left(n^{-1/(d+2)}\right)$.

GridCART can reach a consistency rate of order $O(n^{-1/(d+2)})$ under certain assumptions. However, the consistency rate of CART is far from clear.

Algorithm	Advantage	Disadvantage
CART	Empirically practical	Worst-case zero
		purity gain
InfCART	Positive average	An Influence oracle
	purity gain	required